
smb−direct−v3.txt Page 1

Plan to implement SMB 3 SMB−Direct support in Samba
===
(State: 13.10.2021)
===================

The plan is split into 3 parts:

1. Tasks required to add SMB 3 SMB−Direct support:
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   Lay out what is required in order to develop SMB−Direct with Samba on
   top of a recent Linux Kernel. The result is a setup that can be used in
   production, without bringing the changes into the upstream master branches
   of Samba and Linux.

   ==> 8−10w (~2−2.5M)

2. Tasks required to bring SMB 3 SMB−Direct to Upstream:
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Builds on top of section 1. and includes the work for automated
 regression tests and discussions/adjustments in order to get the
 changes accepted by the upstream Samba and Linux communities.

 ==> 2−4w (~0.5−1M)

3. Development Requirements:
   ~~~~~~~~~~~~~~~~~~~~~~~~
   This plan assumes running on a Linux host.

1. Tasks required to add SMB 3 SMB−Direct support
=================================================

 This is just the first part that is really required in order to get
 something that can be used, e.g. it speaks the required protocols and it
 build on top of recent Samba and Linux−Kernel version (at the time the
 project finishes).

 The feature developement will be designed with upstream inclusion into Samba and
 the Linux−Kernel in mind.

 But the required effort for upstream inclusion can be found in section 2.

1.1 io_uring usage for socket io
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 In order to avoid cpu bound limitation for the io handling in Samba's smbd,
 we created prototypes to improve the performance significantly,
 by using io_uring features like IORING_OP_SPLICE (available from Linux 5.8)

 The SMB−Direct support in Samba should also be based on the io_uring infrastructure
 provided by the IORING_FEAT_NATIVE_WORKERS feature (available from Linux 5.12).

 The available prototype should be made upstream ready for inclusing in
 upstream Samba releases.

 ==> 1w (~0.25M) (1.1 io_uring)

1.2 Linux Kernel Driver
−−−−−−−−−−−−−−−−−−−−−−−

  There're userspace libraries (libibverbs and librdmacm), which offer support
  for RDMA communication, while bypassing the kernel. But these libraries don't
  support fd−passing, which is used by Samba in order to support Multi−Channel.

  There was a userspace SMB−Direct proxy daemon, but it's performance is very
  bad.

  The current design consists of a Kernel driver that provides a socket interface
  PF_SMBDIRECT, with some additional features for RDMA data transfers, which
  can be used via IORING_OP_SENDMSG on Linux 5.12 (and higher).
  It will be available to userspace and kernel space applications.

  This driver is designed to work with every RDMA hardware



smb−direct−v3.txt                                                             Page 2

  and software driver that is available in the Linux Kernel.
  It will also work with any work load the application layer
  is using, e.g. also pwritev() with an iovec array assembling
  a lot of small buffers doesn't trigger problems.

  The SMB3 client in the Linux Kernel has experimental support for SMB−Direct
  (since Linux 4.15). The new experimental SMB3 server called 'ksmbd'
  in the Linux Kernel (scheduled for Linux 5.15) also has experimental
  support for SMB−Direct.
  But both have limitations and only work with a few tested RDMA adapters
  and only for limited workloads. Both implementations don't share SMB−Direct
  related code, so there are two experimental implementation for SMB−Direct.

  I have code to simplify the Linux Kernel SMB3 client and server to
  use my generic PF_SMBDIRECT based driver. Which would mean
  we'll have just a single driver that is shared between the in
  kernel SMB3 client and server, but it's also available to
  userspace, e.g. Samba's smbd, smbclient and libsmbclient.

1.2.1 Implementation in the Kernel (basics)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 There's a prototype that is mostly functional, but it lacks a lot of error
 checks. It is full of memory leaks and some features are not yet implemented
 completely or only in a sync fashion.

 Complete the existing prototype with correct error checking.

 Make sure the Windows SMB−Direct testsuite passes against Samba.

 Add useful trace points in order to debug the driver and find possible
 performance bottlenecks.

 Experiment/research regarding usage of (transparent) huge pages and ways to use
 just one memory registration for an 8MByte buffer.

 We need to batch ib_post_send() requests and only ask for completions on the
 last send that belongs to a higher level operation.

 ib_dma_map_sg() merges elements and we might be able to reduce the size of the
 smbdirect_buffer_descriptors_v1 array. Each element can hold max_frmr_depth sgl
 entries Using just one allows the SEND_WITH_INV to work effectively.
 dma_map_sgtable() may also be of use.

 We need to make use of things like page_pool_create() and support
 the .sendpage() and .splice_read() socket operations.

 Add some restrictions with io_account_mem() and unprivileged port numbers.

 ==> 3−4w

1.2.2 Userspace API for smbdirect:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  The simplified API used in the current prototype looks like this:

   int smbdirect_socket(int family, int type, int protocol);
   int smbdirect_connection_get_parameters(int sockfd,
                             struct smbdirect_connection_parameters *params);
   ssize_t smbdirect_rdma_v1_register(int sockfd,
                             struct smbdirect_buffer_descriptors_v1 *local,
                             int iovcnt, const struct iovec *iov);
   ssize_t smbdirect_rdma_v1_deregister(int sockfd,
                             const struct smbdirect_buffer_descriptors_v1 *local);
   ssize_t smbdirect_rdma_v1_writev(int sockfd,
                             const struct smbdirect_buffer_descriptors_v1 *remote,
                             int iovcnt, const struct iovec *iov);
   ssize_t smbdirect_rdma_v1_readv(int sockfd,
                             const struct smbdirect_buffer_descriptors_v1 *remote,
                             int iovcnt, const struct iovec *iov);
   void smbdirect_buffer_invalidate_cmsg_prepare(struct msghdr *msg,
                             uint8_t *buf,
                             size_t buflen,



smb−direct−v3.txt                                                             Page 3

                             const struct smbdirect_buffer_descriptor_v1 *desc);

  The created socket provides a stream with 4 byte (big endian) length delimiters,
  in order to provide a compatible with SMB over TCP.

  An optimized version with IORING_OP_SPLICE performance like this:

   ssize_t smbdirect_rdma_v1_write_from_pipe(int sockfd,
                             const struct smbdirect_buffer_descriptors_v1 *remote,
                             int splice_pipe_fd)
   ssize_t smbdirect_rdma_v1_read_to_pipe(int sockfd,
                             const struct smbdirect_buffer_descriptors_v1 *remote,
                             int splice_pipe_fd);

  The smbdirect_buffer_descriptors_v1 based APIs are based on sendmsg(MSG_OOB)
  and recvmsg(MSG_OOB), the can be also used via
  IORING_OP_SENDMSG/IORING_OP_RECVMSG on Linux >= 5.12.

  We also need ways to specify parameters like timeouts, max credits, max io size
  and more before connect/listen. So these can be specified per socket from
  userspace, as it makes it easier to find the optimized values.

  The following is required for smbd to announce RDMA interfaces.

   int smbdirect_netif_rdma_capable(const char *ifname);

  ==> 0.5w

1.2.3 Kernelspace API for smbdirect
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 The simplified API used in the current prototype looks like this:

 int smbdirect_kern_connection_get_parameters(struct socket *sock,
 struct smbdirect_connection_parameters *params);
 ssize_t smbdirect_kern_rdma_v1_register_pages(struct socket *sock,
 struct smbdirect_buffer_descriptors_v1 *local,
 struct page *pages[], int num_pages,
 int pagesz, int fp_ofs, int lp_len);
 ssize_t smbdirect_kern_rdma_v1_unregister(struct socket *sock,
 struct smbdirect_buffer_descriptors_v1 *local);
 ssize_t smbdirect_kern_rdma_v1_writev(struct socket *sock,
 const struct smbdirect_buffer_descriptors_v1 *remote,
 size_t size,
 struct iov_iter *iter);
 ssize_t smbdirect_kern_rdma_v1_readv(struct socket *sock,
 const struct smbdirect_buffer_descriptors_v1 *remote,
 size_t size,
 struct iov_iter *iter);

 The code under fs/cifs/ and fs/ksmbd/ should be converted
 to use this api instead of there own limited SMB−Direct implementation.

 I have patches for this conversation already,
 under fs/cifs they have a diffstat of:
 12 files changed, 372 insertions(+), 3030 deletions(−)
 For fs/ksmbd the diffstat looks like:
 14 files changed, 375 insertions(+), 2262 deletions(−)
 In both cases the changes are trivial conversations to
 a slitly different api.

 ==> 0.5w

1.2.4 Write a standalone testsuite
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  This should not use SMB3, but a small custom
  echo−like protocol that is able to test the
  api and protocol.

  The protocol would have opcodes like this:

   REQ_HEADER {



smb−direct−v3.txt                                                             Page 4

       __le32 message_id;
   };
   REP_HEADER {
       __le32 message_id;
       __le32 status;
   };
   DESCRIPTOR {
       __le64 iova;
       __le32 rkey;
       __le32 length;
   };
   ECHO−REQ(REQ_HEADER hdr,
            __le16 echo_factor,
            __le32 data_len,
            __le32 max_response,
            u8 data[date_len])
   ECHO−REP(REP_HEADER hdr,
            __le32 data_len,
            u8 data[data_len])
   /*
    * SETUP−LBUF creates a buffer on the
    * server where the content will be
    * for (ofs=0; ofs < size; ofs += 8) {
    *      PUSH_UINT64_LE(buf, ofs, nonce ^ ofs);
    * }
    * This simulates a file, the server maintains
    * an array of LBUF (files), lbuf_idx is the index into
    * that array.
    */
   SETUP−LBUF−REQ(REQ_HEADER hdr,
                  u32 lbuf_idx,
                  u32 size,
                  u64 nonce);
   SETUP−LBUF−REP(REP_HEADER hdr)
   READ−LBUF−TO−DESCS−REQ(REQ_HEADER hdr,
                          u32 lbuf_idx,
                          u32 flags, /* SEND_WITH_INV */
                          u32 offset,
                          u32 length,
                          u32 num_descs,
                          DESCRIPOR descs[])
   READ−LBUF−TO−DESCS−REP(REP_HEADER hdr,
                          u32 nread)
   WRITE−DESCS−TO−LBUF−REQ(REQ_HEADER hdr,
                           u32 lbuf_idx,
                           u32 flags, /* SEND_WITH_INV */
                           u32 offset,
                           u32 length,
                           u32 num_descs,
                           DESCRIPOR descs[])
   WRITE−DESCS−TO−LBUF−REP(REP_HEADER hdr,
                           u32 nwritten)

  It can be used as regression and performance test
  for the kernel parts without having to deal with
  Samba or the fs/cifs/ code.

  ==> 1w

 ==> 5−6w (~1.25−1.5M) (1.2 Linux Kernel Driver)

1.3 Add support for SMB−Direct to Samba
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1.3.1 Add support to the generic client library
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 There's already a prototype to let 'smbclient'
 use SMB−Direct with RDMA. But it's not used
 automatically as multi−channel support with
 interface detection is missing.

 For a start we need to be able to write tests

smb−direct−v3.txt Page 5

 and allow smbclient to specific the transport
 protocol e.g. NetBios, TCP, SMB−Direct (or later QUIC).

 This is required in order to test without
 relying just on highlevel tests with Windows.

 We also need to write some smbtorture tests.

 ==> 1−2w

1.3.2 Add support to smbd READ/WRITE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  There's already a prototype that allows connections
  via SMB−Direct including RDMA read and writes, but
  they use a sync interface in order to do the RDMA
  read/write operation these need to make async.

  We should maybe able to implement some optimization
  using IORING_OP_SPLICE in order to avoid data copies.

  Can we do RDMA read/writes from/to the page cache
  of files?

  ==> 0.5w

1.3.3 Plug SMB−Direct into the interface detection
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 We need a way to specify if smbd should
 listen on SMB−Direct sockets. If so we should
 automatically mark interfaces exported by
 the Multi−Channel interface detection as RDMA capable.

 ==> 0.5w

 ==> 2−3w (~0.5−0.75M) (1.3 Add support for SMB−Direct to Samba)

==> 8−10w (~2−2.5M) (1 Tasks required to add SMB 3 SMB−Direct support)

2. Tasks required to bring SMB 3 SMB−Direct to Upstream
===

2.1 Upstream Samba Changes
−−−−−−−−−−−−−−−−−−−−−−−−−−

2.1.1 Automated SMB−Direct Testing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  Samba requires features to be tested by every push to the upstream
  repositories.

  There is support for using network namespaces (on Linux) instead of
  socket wrapper for testing.

  Maybe it's possible to integrate something like this into the gitlab−ci.
  We could download the kernel driver sources and build/load the kernel
  module before starting the SMB−Direct specific tests inside a KVM machine
  (it might not be possible to do that from within a docker container).

  Or we just have a stable version of the kernel driver installed on a
  private runner.

  ==> 1−2w

 ==> 1−2w (~0.25−0.5M) (2.1 Upstream Samba Changes)

2.2 Linux Kernel Driver
−−−−−−−−−−−−−−−−−−−−−−−

2.2.1 Upstream integration
~~~~~~~~~~~~~~~~~~~~~~~~~~


smb−direct−v3.txt Page 6

 Make use of the correct kernel APIs.

 The initial design is based on /dev/smbdirect and ioctl() calls to create
 and operate on a socket.

 In order to bring this code upstream it's very likely that we have to
 adopt to modern kernel APIs.

 It's very likely to take lot of time to discuss with the kernel community
 about the correct ways to integrate the driver into the upstream kernel.

 We may also have to rewrite parts of the driver in order to make it
 acceptable.

 It might be easier to propose only the in kernel api first and let it
 replace fs/cifs/smbdirect.* to be used in fs/cifs. Small selfcontained
 chunks are much easier to review and have a much higher chance to get
 accepted.

 Here is just a list of things which are likely to be
 considered/researched/discussed:
 − Should we introduce a PF_SMBDIRECT to
 replace the ioctl() on /dev/smbdirect
 in order to allow the socket() syscall
 to create the socket?
 − Should we use getsockopt/setsockopt to replace all/some
 custom ioctl() calls?
 − Should we try to integrate our custom async handling
 with io_uring?
 − Do we need special handling in order
 to interact with network namespaces
 (See register_pernet_subsys())
 (See "rdma sys set netns shared"?)
 − Do we need to interact with netlink sockets?
 − Should we use common structures for buffer memory handling
 See sk_buff/sock_kmalloc/sk_receive_queue/sk_wmem_alloc/sk_memcg/
 sk_stream_wait_memory/sk_enter_memory_pressure/sk_prot_mem_limits/
 − Can we use sock_def_write_space instead of our own?
 − Do we need to implement any/more of common getsockopt/setsockopt
 opcodes?
 − Should be make use of sk_stream_error(), see sk_err/sk_err_soft
 and SIGPIPE
 − Do want to interact nicely with common tools like
 "netstat" or "ss" and replace the custom diagnostics from /proc/smbdirect?
 See also sock_diag_register/sock_diag_handler.
 − Do we need to implement some of the SK_FLAGS_TIMESTAMP logic?
 − We may need to interact with various security/filter layers
 in the kernel. Research on security_socket_post_create,
 BPF_CGROUP_PRE_CONNECT_ENABLED, netfilter, BFP filters
 and related things.

 While doing the integration work we may find bugs or limitations in
 existing kernel infrastructure, we may need to do some generic cleanups in
 all sorts of kernel subsystems.

 As smbdirect should work with every RDMA hardware or software driver in
 the kernel, we may need to analyse problems related hardware or the
 related driver. We may hit unsolveable problems, but in that case we
 should at least try to fail gracefully (at best before establishing a
 connection). E.g. we rely on FRWR (Fast Registration Work Requests)
 support and check for IB_DEVICE_MEM_MGT_EXTENSIONS.

 ==> 1−2w

 ==> 1−2w (~0.25M−0.5M) (2.2 Linux Kernel Driver)

==> 2−4w (~0.5−1M) (2 Tasks required to bring SMB 3 SMB−Direct to Upstream)

c) Development Requirements
===========================

 As the success of implementing SMB−Direct (unlike other typical SMB

smb−direct−v3.txt Page 7

 features) is bound to the available Hardware and also the Linux Kernel
 (including the device specific driver), we need to clarify the project
 boundaries in order to build a common expectation of project's outcome.

 As each vendor will most likely have a specific hardware setup that
 should work in the end, we propose that each vendor provides a hardware
 setup that can be used during the development.

 The requirements for each setup are these:

 5 x Hardware Computers with:
 − remote KVM−over−IP access in order to control the
 BIOS/boot sequence and allow forced hardware resets.
 − 2 should be servers, similar to the product the
 vendor will later ship, they might have fast
 disks (ssd/nvme)
 − 2 can be typical client machines
 − 1 will be used to compile and monitor
 − 1 server and 1 client and the monitor host
 will run with Linux
 (Ubuntu−18.04 (or newer) amd64 at least in the beginning,
 maybe with dual boot to the vendor's favorit distribution)
 − 1 server and 1 client will run with Windows
 (I'd use Windows Server 2019 Datacenter on both,
 maybe dual boot to 2016 and/or 2012R2)
 − All of them are reachable via ssh or rdp on
 a normal (at least 1 Gbit) network interface from
 the outside.
 − The Windows server and client will be taken
 as a reference in order to get a feeling for
 what performance could look like.
 − For each R−NIC flavor we need at one card in each
 computer. All 5 cards need to be the exact same model
 with the same firmware version. If more than flavor
 is desired we can have more than one card in each computer.
 − Most R−NICs have more than one port, we should use at least
 2 ports. Port 1 of all cards should be attached to the
 same switch, that same applies to port 2 and others.
 If a switch is able to handle 10 ports it should be
 ok to connect all 10 (2x5) ports to the same switch.
 − If the interaction with ctdb should be implemented/tested,
 we may need more hardware.

 All switches need to offer a monitoring/mirroring port where the
 monitoring host can capture traffic between the other hosts, this is a
 very important requirement.

 We'll start with DiskSpd.exe based tests from the Windows Client, see how
 Chelsio did their tests,
 https://www.chelsio.com/wp−content/uploads/resources/T5−100G−SMB−Windows.pdf

 If the vendor has a special workload in mind the software needs to be
 installed on a client (most likely the Windows client) and run against the
 Windows server as reference.

 While we take Windows as a reference it's very likely its performance
 won't be reached (at least initially, but maybe forever). But the goal is
 that the SMB−Direct code path is at least not slower or more cpu consuimg
 as the TCP code path for the typical DiskSpd.exe workloads.

 The current linux kernel module prototype compiles against 4.10 and higer
 versions (currently v5.5). Most of the testing was done with the 5.3
 kernel from ubuntu 18.04.

 The new io_uring feature of 5.1 (and higher kernels) provides async io
 with reduced context switches, we may rely on this or at least use some
 concepts. See https://lwn.net/Articles/778411/

 As it's the goal to bring the kernel driver upstream (in the long run),
 we may only support recent kernel versions (at the time we finalize the
 project). Backports to older kernel versions are not part of the project.

 As it's not trivial to get kernel changes upstream, we may have to

smb−direct−v3.txt Page 8

 maintain the out of tree module for a while. We had some discussions with
 the maintainer of the cifs.ko kernel module and it might be possible to
 get the kernel changes merged step by step. A first part could replace the
 existing SMB−Direct client implementation in the smb3 kernel client.

 For the Samba part we'll develop against the current master branch. The
 Samba−Team has hight standards for getting features pushed to the upstream
 master tree (which is the base for future releases). Typically new
 features need regression tests.

 The maintainance of the out of tree branches (after the main project
 finished) is not part of the project.

